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We have evaluated conformational and orientational averages of binary interaction integrals for pairs of
chains constituting atomistic representations of short polymer molecules. By considering A–A, B–B and
A–B pairs, we relate these results with the Flory–Huggins parameter for the A–B mixtures. This
parameter is commonly accepted as a good indicator of compatibility. Since the method ignores the
simultaneous interactions with other molecules in the mixture, the local environment is approximately
described by introducing an effective medium dielectric constant whose value is conveniently para-
meterized. The results for four different real systems are compared with data obtained from experi-
mental neutron scattering data. The method qualitatively predicts the sign and variation with
temperature in the four different cases, also showing a reasonable quantitative agreement in some of the
cases. Its performance is discussed in comparison with a standard method that evaluates the Flory–
Huggins parameter by calculating an average of the intermolecular energy of two molecules in contact,
taking also into account their off-lattice Flory–Huggins coordination numbers.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Knowing the degree of compatibility in polymer mixtures is of
great scientific and technological interest, since its accurate
prediction may lead to the design of new materials with better
characteristics than the single components [1]. From the experi-
mental point of view, compatibility of blends can be characterized
by means of the Flory–Huggins parameter, c [2]. This parameter can
be experimentally extracted from data obtained in neutron scat-
tering experiments. Although these experimental values of c may
not always completely consistent with the mixture separation
diagrams, they provide a valuable indication on the mixture
compatibility, which can theoretically be used for other systems
containing different chain lengths.

Theoretical predictions of c can be performed with numerical
data obtained from numerical simulations [3]. Atomistic repre-
sentations of the chains involved in the mixtures can be built, and
realistic interactions between different bonded or non-bonded
atom can be incorporated from the information contained in
‘‘forcefield’’ files.

Molecular Dynamics simulations may actually be performed for
simulation boxes representing the real systems. These simulations
All rights reserved.
yield numerical trajectories of the polymer blends that constitute
statistical samples from which different properties can be calculated.
A collective ‘‘scattering’’ structure factor, S(q), (similar to that used to
describe the experimental scattering data) can be obtained from the
trajectories. Its subsequent fit to a formula provided by the Random
Phase Approximation provides a numerical estimations of c,

V0S�1ðqÞ ¼ 1
NAFAPAðqÞ

þ 1
NBFBPBðqÞ

� 2c (1)

This procedure is similar to the treatment used for the experi-
mental scattering data. In Eq. (1), V0 is the reference microscopic
volume, VR, normalized with respect to the volume of a scattering
unit, Ni is the number of scattering units in chains i, and Fi is their
volume fraction in the mixture. Finally, Pi(q) is the individual
scattering form factor of chain i, which can also be obtained from
the trajectories. This method has been followed in some recent
investigations for different mixtures of polymers [4–6]. However, it
requires an important amount of computational time, since long
equilibrated trajectories have to be generated in order to obtain
sufficiently accurate values of S(q).

A computationally efficient approach for the estimation of c was
proposed time ago. This approach is based on the direct evaluation
of Flory–Huggins intermolecular energy and coordination number
between a molecule of a given type, i, and another molecule, j, in
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contact with it, to describe their binary interaction averaged over
different orientations [7,8]. Although this approach has been shown
to qualitatively predict the miscibility behavior of some types of
blends, we have verified that it does not give accurate results for
some mixtures of molecular structures.

In the present work, we explore another type of procedure
consisting in determining binary interaction integrals between
pairs of units. These integrals are orientational and conformational
averages that take into account the three possible types of inter-
molecular interactions between the units (AA, BB or AB) at different
distances. We have made use of a basic theoretical treatment to
relate binary integrals with parameter c. There are two substantial
differences between our procedure and the approach explained in
the preceding paragraph. (1) Our treatment takes into account
interactions at all different distances between the molecular centers
of masses. (2) However, it ignores the simultaneous presence of
other molecules around the interacting pair. Actually, we take into
account their mean-field effect on Coulomb interactions by intro-
ducing a parameterized medium dielectric constant. With the same
purpose, we also explore other details in the long-range potential, in
particular the cut-off for the intermolecular interactions, selecting
the options that best reproduce the experimental data.

The results obtained with this new method are compared with
existing experimental data and our own evaluations from the alter-
natives methods mentioned above. We explore four different types of
mixtures: polystyrene/polyvinylmethylether, PS–PVME, polystyrene/
polymethylmethacrylate, PS–PMMA, polystyrene/(1,4-cis)polyiso-
prene, PS–PI, and polyoxyethylene/polymethylmethacrylate, POE–
PMMA. It is known that the PS–PVME system is miscible at room
temperature and shows a lower critical solution temperature, the
long molecular weight PS–PMMA and PS–PI systems are not miscible
at room temperatures, showing upper critical solution temperatures,
and the POE–PMMA system is miscible at room temperature. Precise
values of the Flory–Huggins parameter c for all these mixtures have
been documented from neutron scattering data [9].

2. Theoretical scheme

Our procedure has been inspired by the basic specifications of
the Flory–Huggins theory, though lattice restrictions do not apply
to our atomistic chain models and, moreover, the concept of coor-
dination number is not considered in our calculations. With this
end, we divide a macroscopic system in N sites. Each one of these
sites may consist of a short chain or a part of a longer chain and
therefore can adopt different internal conformations. Moreover, it
can interact with neighboring sites. All the sites should show
a similar behavior in different regions of the system. Therefore, we
assume that the extensive thermodynamic properties of the system
are the sum of identical contributions from all sites. This is
consistent with the Flory–Huggins definition of sites as small
macroscopic regions with interactions described by a mean-field
potential. Therefore, the intermolecular energy of the system, U,
can be divided into N equivalent terms, Ui,

U ¼ ð1=2Þ
X

i

X
j

Uij ¼
X

i

Ui (2)

where

Ui ¼ ð1=2Þ
X
jsi

Uij (3)

Similarly, the average free energy corresponding to the intermo-
lecular interactions of the system, Ainter, is divided into N equivalent
terms and each one of these terms is calculated from an indepen-
dent site partition function,
Ainter ¼ NAinter
i ¼ �kBTNln zinter

i (4)

� �

where kB is the Boltzmann factor and T the temperature. The
intermolecular site classical partition function, zinter

i , corresponds
to the normalization factor of the probability associated to site i of
energy Ui.

Pinter
i ¼ e�Ui=kBT=zinter

i (5)

According to Eqs. (3) and (5), the probability of each site depends
on the configuration of the whole system. Integration of this
probability over the different positions of all sites in a system of
volume V yields VN. Therefore,

zinter
i ¼

�
1=VN

�Z
e�Ui=kBT dRi

Y
jsi

dRj

¼
�

1=VN
�Z

dRi

Y
jsi

e�Uij=2kBT dRj (6)

The multiple integral on the third term of Eq. (6) can be evaluated
by summing and subtracting (1) from the integrand and perform-
ing a cluster expansion, following the classical approach commonly
used in perturbation theory,

Y
jsi

e�Uij=kBT h
Y
jsi

�
1þ fij

�
¼ 1þ

X
jsi

fij þ
X
ksi

X
lsi

fikfil þ. (7)

Furthermore, it is assumed that all the terms fij ¼ e�Uij=2kBT � 1 are
independent and equivalent. Considering a pair of sites i and j,
integration over the position of their center of masses (that is not
related with their interaction) in volume V, together with similar
integrations over the rest of independent site positions yield
a factor VN�1. The remaining integration over the relative distance
between i and j can be numerically performed. Taking into account
the number of similar integrations associated to the different terms
of the expansion, we obtain

zinter
i y

h
1þ ðN � 1ÞIsites=V þ ðN � 1ÞðN � 2ÞðIsitesÞ2=2V2 þ.

i

(8)

where

Isites ¼ 4p
�Z �

e�UijðRijÞ=2kBT � 1
�

R2
ijdRij

�
(9)

is defined as the binary interaction integral between sites. In Eq. (9)
relative positions between sites are averaged over all their different
orientations and internal conformations. Therefore, for high values
of N,

zinter
i y

XN

k¼0

ðN=VÞ
k!

k

½Isites�k¼ eðN=VÞIsites (10)

(This closed form includes all the different terms of the cluster
expansion). Finally, the average free energy of the system can be
written as:

Ainter ¼ �kBT
�

N2=V
�

Isites (11)

It should be commented that the total intermolecular energy can be
obtained through an alternative mathematical procedure without
assuming the independent site contributions that are implicit in
the Flory–Huggins theory. In this case, the N(N� 1)/2 interactions
should be simultaneously included in the evaluation of the system
partition function, Z, from the total intermolecular energy, U. Using
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again a cluster expansion and assuming that the binary interactions
are equivalent and independent, the final result is

Ainter ¼ �kBT
�

N2=2V
�

Ibin (12)

This ‘‘non Flory–Huggins’’ approach includes the standard binary
interaction integral, Ibin,

Ibin ¼ 4p
�Z �

e�UijðRijÞ=kBT � 1
�

R2
ijdRij

�
(13)

that also provides the well known relationship between second
virial coefficients and intermolecular potentials. The latter proce-
dure is aimed to the study of dilute systems. In previous work, we
have numerically predicted second virial coefficients for n-alkanes
and branched-alkanes in the gas phase [10,11] and also for linear
and star polymer solutions [12,13], through the evaluation of Ibin for
these chain molecules, using bead repeat units that interact
through a Lennard–Jones potential. Eqs. (11) and (12) give similar
results for the total intermolecular energy when the terms Uij(R) are
largely positive at small R and close to zero in the attractive region.

Eq. (11) can be easily generalized to the case of a mixture of A
and B-sites. The intermolecular energy of NA sites, each one inter-
acting with NB sites is

Ainter
AB ¼ �kBTNAðNB=VÞIAB

sites (14)

where

IAB
sites ¼

ZN

0

f AB
M dRij (15)

f AB
M is the averaged radial Mayer function of the binary interaction

between sites of A and B types,

f AB
M ¼ 4pR2

ij

D�
e�UAB

ij ðRijÞ=2kBT � 1
�E

(16)

and IAB
sites denotes the corresponding site binary interaction integral.

It includes orientational and conformational averages over
a sample of pair of sites A and B (chains or chain fragments) whose
centers of masses are placed at a given distance Rij. The mixture
total intermolecular free energy is the balance of the 4 different
types of interactions between the 2 different types of sites. There-
fore, for a system composed of NAFA A-sites and NBFB B-sites,

Ainter
mixture ¼ �kBTFAFB

h
2ðNANB=VÞIAB

sites �
�

N2
A=V

�
IAA
sites

�
�

N2
B=V

�
IBB
sites

i
(17)

The density of sites (Ni/Vi) can be simply estimated from the molar
volumes of sites A and B, calculated from their molecular weights
and macroscopic densities, (Ni/V)¼NAV/vi, where NAV is the Avo-
gadro number and vi is the site molar volume. Experimental values
of c are usually given for a given reference site volume, VR, common
to different systems. The number of sites consistent with this
definition is NR

i ¼ VRðNi=VÞ. Taking into account these terms, the
comparison of Eq. (16) with the enthalpic term of the Flory–Hug-
gins free energy, AFH

enthalpic ¼ kBTFAFBc, finally yields.

c ¼ �VRN2
AV

h
2v�1

A v�1
B IAB

sites � v�2
A IAA

sites � v�2
B IBB

sites

i
(18)

3. Computational methods

We compute integrals IAB
sites, IAA

sites and IBB
sites for the A and B

components of the different mixtures. The interaction sites are
defined to be short chains of similar sizes For PS, PI and PMMA, we
use chains of 3 repeat units. For PVME and POE, we use chains with
5 repeat units and 4 repeat units, respectively. (The average radii of
gyration of all these chains are in the range 3.7� 0.2 Å). Molecular
weights and volumes are also similar, except in the case of POE
chains that show significantly lower values of these magnitudes.

Different methods can be employed to build chains and sample
conformations. In our case it has been expedient to use the ‘‘Build’’
and ‘‘Discover’’ modules of the software suite ‘‘Materials Studio’’ [8].
We have picked up pairs of conformations contained in Molecular
Dynamics simulation trajectories. These simulations have been
performed in NVT boxes with periodic boundary conditions. We
consider pure components systems and mixtures composed by the
same number of chains of both components. Temperature has been
maintained approximately constant by means of the Andersen
numerical thermostat [14]. The simulation boxes include 20 chains.
Different configurations are obtained through relatively short
simulation runs from previously equilibrated systems (1000 ps,
with time steps of 1 fs). We have analyzed 20 configurations or
frames along the trajectories. For each one of these configurations,
we have considered the interactions between the different 190 pairs
of chain conformations, defined from the coordinates of all atoms
inside the box at the different selected frames.

Our Monte Carlo procedure to sample orientations for a given
pairs of chain conformations have been described in detail before
[10]. We locate the centre of mass of one of the chains, A, in the
origin of coordinates. The center of masses of the other chain, B, is
placed according a fixed radial coordinate Rij and two randomly
chosen polar angles. We also choose three additional Euler angles
defining the orientation of the internal coordinate axes of chain B.
This way, all the coordinates of atoms A and B are defined with
respect to the coordinate axes of chain A. We repeat this process
1000 times for each given pair of conformations at each given
distance Rij. We compute the terms e�UAB

ij ðRijÞ=2kBT , obtain the
conformational and orientational averages and evaluate the
numerical integral defined in Eq. (15).

The terms UAB
ij ðRijÞ can be obtained as a sum of all the different

intermolecular interactions between atoms. These interactions are
defined in forcefield files. van der Waals and Coulomb interactions
should be included. In this work, we have employed the forcefield
PCFF, based in ab initio calculations and specifically aimed to
polymer chains [15].

Our theoretical treatment neglects simultaneous interactions
between the sites (chains). However, other chains are actually
located in the same space region where the pairs of chains A and B
interact. We assume that these other chains can be treated as
a macroscopic medium which can be approximately taken into
account by properly modifying the interactions. In particular, the
vacuum dielectric constant, 30 is substituted by a medium dielectric
constant, 3. Distance-dependent dielectric constants are particu-
larly useful to describe an implicit medium since they can give
a more precise description of the stronger interactions at short
distances [8,16,17]. We consider

3 ¼ 30ar (19)

where a is an empirical parameter, that we fix to give the most
adequate reproduction of the experimental data. After analyzing
our numerical results for the different systems, we have adopted
the value a¼ 1.3.

Long-range interaction potentials usually include a cut-off. In the
case of chains in an implicit medium, attractive interactions at high
distances are overestimated unless the cut-off value is reduced [18].
For the present case, we have verified that a slight reduction of the
cut-off to the value of 8 Å, applied over a spline range of 1.1 Å, gives
the most adequate numerical results. It should be remarked that the
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Fig. 1. Numerical values of the averaged radial Mayer function defined in Eq. (16), for
the different pairs of chains in the PS–PVME mixture at 400 K.
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final results provided by our method are particularly sensitive to
these details in the application of the interaction potential.

Our results are compared with calculations performed with the
method based in the direct computation of intermolecular energies
and coordination numbers, mentioned in the Introduction,
according to its implementation in module ‘‘Blends’’ of ‘‘Materials
Studio’’ [7,8]. Two molecules i and j are randomly generated with
a common center of masses position and the orientation of mole-
cule j is randomly changed and subsequently translated until its van
der Waals surface not longer overlaps with molecule i. The inter-
molecular energy between the two molecules is then obtained. The
process is repeated with different random orientations in order to
obtain a distribution of intermolecular energies, Pij(E). The averaged
intermolecular energy is calculated as:

Eij ¼

Z
EPijðEÞe

�E
RT dEZ

PijðEÞe
�E
RT dE

(20)

According to the Flory–Huggins theory, a coordination number
should be also determined. With this end, j molecules are subse-
quently introduced in a cluster with molecule i, following the same
procedure described above, so that each new molecule j is
randomly rotated and then translated to avoid any contact of its van
der Waals surface with that of the cluster while there is a single
contact of the new molecule with molecule i. The total number of j
molecules introduced this way before not more molecules can be
included determines the coordination number. The process is
repeated many times to obtain the average coordination number Zij.

For a given mixture AB, parameter c corresponding to the mean
molecular volume of the units can be obtained as:

c ¼ 1
2
ðZABEAB þ ZBAEBA � ZAAEAA � ZBBEBBÞV0=RT (21)

where V0 is now referred to the mean volume of the molecules
(obviously EAB ¼ EBA).

This method shows an even greater sensibility to the forcefield
details. The most reasonable results have been obtained with the
COMPASS forcefield without any potential cut-off. (This forcefield
was provided to describe interactions of polymers in condensed
state [19]. It should be considered that these calculations are per-
formed for a pair or a cluster of chains in contact; therefore the
prescriptions for condensed systems are more likely to apply).

We will also discuss some previous results [6] that we obtained
by computing collective scattering functions for long Molecular
Dynamics trajectories (60–84 ns) of the PS–PVME mixture. The
latter simulations were performed in NVT simulation boxes with
a reduced density of 0.7 g/cm3. We computed Coulomb interactions
according to the vacuum dielectric constant and selected the
COMPASS forcefield with the standard cut-off value of 9.5 Å [8].
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Fig. 2. Numerical values of the averaged radial Mayer function defined in Eq. (16), for
the different pairs of chains in the PS–PMMA mixture at 400 K.
4. Results and discussion

In Figs. 1–4, we show numerical values for the averaged radial
‘‘Mayer function’’ defined in Eq. (16). These results are obtained
through our Monte Carlo simulation for the different pairs of chains
pairs of chains of all systems at 400 K. Very similar curves are
obtained for other values of T. There is a purely repulsive region for
which the energy is large and positive and the function is close to
�4pR2

ij. Therefore, its value is zero for Rij¼ 0. At intermediate
distances, we can observe a broad peak in the region where
attraction forces are significant, before reaching the asymptotic
limit corresponding to chains too far away to interact, where the
function approaches again to zero. It can be observed that
differences between the pairs are small for the PS–PVME systems,
anticipating a small final value of parameter c. The rest of systems,
however, exhibit more significant differences that may lead to
higher absolute values of c.

Fig. 5 shows numerical values of the three different site binary
interaction integrals for the PS–PI at 400 K, as defined in Eq. (15).
The plotted functions have been obtained with different upper
integration limits for Rij, Rmax. It is observed that practically
constant integral values are obtained for R> 20 Å. The curve cor-
responding to the mixed pair (type AB) is always between those
corresponding to pairs of identical chains (AA or BB). Similar curves
were obtained for all systems and temperatures.

The final c results, obtained from Eq. (18) for the different
systems and temperatures, are shown in Table 1. These results show
a general qualitative agreement with the experimental estimations,
obtained from neutron scattering data [9], also contained in Table 1.
Thus, the simulation values for the Flory–Huggins parameter cor-
responding to the POE–PMMA mixtures are slightly negative, i.e.,
these systems behave as miscible in agreement with experimental
behavior. Our c results are clearly positive for the PS–PI mixtures,
also in agreement with the experiments. For the PS–PMMA
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Fig. 3. Numerical values of the averaged radial Mayer function defined in Eq. (16), for
the different pairs of chains in the POE–PMMA mixture at 400 K.

l
s
i
t
e
s

R
max

(Å)

Fig. 5. Results for the site binary interaction integrals defined in Eq. (15), corre-
sponding to the different site interactions in the PS–PI mixture at 400 K, obtained with
different numerical values of the upper integration limit, Rmax.
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mixtures, both simulation and experimental data are positive.
Finally, our results for the PS–PVME mixtures are small and change
from negative to positive values as temperature increases, a feature
also shown by with the experimental data.

From the quantitative point of view, the simulation and experi-
mental results are reasonably close for most systems, though some
differences can be important compared with the small absolute
value of the experimental data, clearly exceeding the uncertainty
range of the simulation results. (The error bars of the simulation
data are estimated to be smaller than �0.01 through the analysis of
deviations of several independent simulation runs). These differ-
ences are very significant in the case of the PS–PMMA systems. It
should be observed that, in the systems containing PMMA, the
attraction between PMMA pairs of chains is stronger due to the
presence of an important proportion of oxygen atoms with higher
negative partial charges. However, in the case of the POE–PMMA
systems, both PMMA and POE pairs have strong attractions since
the latter chains also contain an important proportion of oxygen
atoms. It should be considered that the POE chains have lower
molecular volume than the rest. Therefore, in spite of the absolute
magnitudes of interactions observed in Figs. 2 and 3, the relative
f
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Fig. 4. Numerical values of the averaged radial Mayer function defined in Eq. (16), for
the different pairs of chains in the PS–PI mixture at 400 K.
weight of the POE interactions in Eq. (18) for the POE–PMMA
system is higher and closer to the weight of PMMA interactions
than the weight of PS in PS–PMMA. Therefore, the discrepancy
between the experimental and simulation results of PS–PMMA can
be attributed to the method’s failure to cope with the significantly
different contributions existing in this particular system.

It can also be observed that, in spite of the quantitative
discrepancies, both the calculations and the experimental data for
PS–PMMA and PS–PI systems show temperature variations that are
consistent with upper critical solution temperatures, while the PS–
PVME mixture data predict a lower critical solution temperature
behavior. Although the c data reported from the neutron scattering
experiments for POE–PMMA mixtures [9] do not vary with
temperature, some phase separation studies [20] claim the exis-
tence of an upper critical solution temperature. Our simulation
results indicate a small negative variation of c with temperature,
consistent with an upper critical solution temperature, though they
indicate that this temperature would be placed below the mixture
glass transition.

The results obtained with the method incorporated in module
‘‘Blends’’ (direct calculation of interaction energies and coordina-
tion numbers) are also reported in Table 1. In comparison with the
Table 1
c (for a volume of 100 Å3) obtained from the methods described in the text for
different mixtures at different temperatures, compared with values computed from
fitted curves that summarize neutron scattering data [9].

Temperature (K) PS–PVME PS–PMMA POE–PMMA PS–PI

From Eq. (18)
298 �0.0018 0.6 0.13
350 �0.0006 0.26 �0.011 0.057
400 0.006 0.15 �0.016 0.023
450 �0.019

Experimental
298 �0.041 0.0195 �0.0021 0.067
350 �0.02 0.0187 �0.0021 0.0581
400 �0.0045 0.0178 �0.0021 0.052
450 0.007 0.0172 �0.0021 0.047

‘‘Blends’’ module
298 0.32 0.12 �0.67 0.21
350 0.24 0.09 �0.27 0.19
400 0.19 0.09 �0.04 0.12
450 0.16 0.07 �0.02 0.12
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procedure proposed in this work, this method offers similar qual-
itative description of the experimental behavior for the PS–PI, POE–
PMMA and PS–PMMA mixtures. From the quantitative point of
view, the ‘‘Blends’’ module values are in relatively closer agreement
with the PS–PMMA experimental data, though they are not totally
satisfactory. However, this procedure yields higher results than our
method for the PS–PI mixtures and its performance is clearly
poorer, giving considerably high absolute values, for the POE–
PMMA blends. Furthermore, the ‘‘Blends’’ module offers a poor
qualitative description of the experimental data for the PS–PVME
systems, showing high positive values of c and predicting an upper
critical solution temperature. Both features are in contradiction
with the measurements.

Finally, we should compare the results in Table 1 for the PS–
PVME with our previous Molecular Dynamics estimations of c,
based in fits of simulated collective scattering structure functions to
Eq. (1). In our previous work [6], the mean results for c were
reported to be �0.02 for the systems at 350 and 400 K and �0.006
for 450 K. It can be observed that, in comparison with the experi-
mental data, these data from a more direct procedure have
a performance similar to the simulation values obtained in this
work using considerably less extensive calculations.

It is, therefore, concluded that the calculation of binary inter-
action integrals has lead to reasonable predictions on the misci-
bility behavior of different systems. However, this method requires
the previous parameterization of some simulation parameters to
approximately take into account many-chain effects that are not
considered in the theoretical description.
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